If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x-368=0
a = 5; b = 6; c = -368;
Δ = b2-4ac
Δ = 62-4·5·(-368)
Δ = 7396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7396}=86$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-86}{2*5}=\frac{-92}{10} =-9+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+86}{2*5}=\frac{80}{10} =8 $
| 3y+7=6y-2 | | 14+4y=30 | | 8x=661 | | 11-(2x+4)=-5(x+4) | | 6x-9=-6x-4 | | 8-(2x+4)=24 | | 11-(2x+4)=5(x+4)+1 | | 44-(18+7x)=1-2x | | 5x-3(3x-1)=x-4 | | -4(4+x)+10x=2x | | 41x-15=20 | | 2(3w+1)=18 | | x^2-0.1x-0.34=0 | | 38+x12=(3+x)10 | | 2x+3x+x=5x | | x^2+3x-18=0 | | 450-4x-0.1x^2=0 | | 5x-10+10x+15=130 | | 25/x=1/2 | | 1+5x-(2x+8)=3 | | 2x+105=535 | | x=64/(8+4*2) | | 5w-3=2w+18 | | 0.3x=120 | | 10(x+2)=4(x+14) | | x/60=20/100 | | 20x-18=9x+15+8x+21 | | (15b-5)-7(2b+2)=-6 | | 0.4x+x÷3=0.2x+6 | | w2-2w-15/w2-6w+9/w-5/w-3=0 | | w2-2w-15/w2-6w+9/w-5/w-3=1+6/w-3 | | -x+2x=3-2x |